258 research outputs found

    Techniques for improved convergence in neighboring optimum guidance

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77140/1/AIAA-1969-888-643.pd

    Example of function optimization via hybrid computation

    Full text link
    Iterative techniques for function optimization have been considered extensivezy for use in all-digital computation. Relatively little has been done to take advantage of the much higher integration speed of hybrid computation systems. This paper demonstrates application of one simple procedure in a hybrid envi ronment and compares the results to those obtained by an efficient digital procedure. Even though a much more efficient procedure was used on the digital, time-saving factors between 8 and 2 were obtained via the simpler hybrid implementation. Since the dollar cost of the hybrid is much less than that of the digital, the hybrid has a large advantage per solution.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68324/2/10.1177_003754977302100204.pd

    Trajectory optimization by a direct descent process

    Get PDF
    The problem considered is that of trajectory optimization using step-by-step descent to minimum cost along the direction of the cost gradient with respect to the control. Using a hybrid computer, the gradient is computed di rectly as the response to nearly impulsive control perturba tions. A method is presented for computing the gradient when several terminal constraints are enforced. Examples of application of the method are presented. It is concluded that the direct gradient computation method has some significant advantages over other methods.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68738/2/10.1177_003754976801100308.pd

    Evolutionary algorithms for optimal control in fed-batch fermentation processes

    Get PDF
    In this work, Evolutionary Algorithms (EAs) are used to achieve optimal feedforward control in a recombinant bacterial fed-batch fermentation process, that aims at producing a bio-pharmaceutical product. Three diferent aspects are the target of the optimization procedure: the feeding trajectory (the amount of substrate introduced in a bioreactor per time unit), the duration of the fermentation and the initial conditions of the process. A novel EA with variable size chromosomes and using real-valued representations is proposed that is capable of simultaneously optimizing the aforementioned aspects. Outstanding productivity levels were achieved and the results are validated by practice

    Natural and sail-displaced doubly-symmetric Lagrange point orbits for polar coverage

    Get PDF
    This paper proposes the use of doubly-symmetric, eight-shaped orbits in the circular restricted three-body problem for continuous coverage of the high-latitude regions of the Earth. These orbits, for a range of amplitudes, spend a large fraction of their period above either pole of the Earth. It is shown that they complement Sun-synchronous polar and highly eccentric Molniya orbits, and present a possible alternative to low thrust pole-sitter orbits. Both natural and solar-sail displaced orbits are considered. Continuation methods are described and used to generate families of these orbits. Starting from ballistic orbits, other families are created either by increasing the sail lightness number, varying the period or changing the sail attitude. Some representative orbits are then chosen to demonstrate the visibility of high-latitude regions throughout the year. A stability analysis is also performed, revealing that the orbits are unstable: it is found that for particular orbits, a solar sail can reduce their instability. A preliminary design of a linear quadratic regulator is presented as a solution to stabilize the system by using the solar sail only. Finally, invariant manifolds are exploited to identify orbits that present the opportunity of a ballistic transfer directly from low Earth orbit

    Differential evolution for the offline and online optimization of fed-batch fermentation processes

    Get PDF
    The optimization of input variables (typically feeding trajectories over time) in fed-batch fermentations has gained special attention, given the economic impact and the complexity of the problem. Evolutionary Computation (EC) has been a source of algorithms that have shown good performance in this task. In this chapter, Differential Evolution (DE) is proposed to tackle this problem and quite promising results are shown. DE is tested in several real world case studies and compared with other EC algorihtms, such as Evolutionary Algorithms and Particle Swarms. Furthermore, DE is also proposed as an alternative to perform online optimization, where the input variables are adjusted while the real fermentation process is ongoing. In this case, a changing landscape is optimized, therefore making the task of the algorithms more difficult. However, that fact does not impair the performance of the DE and confirms its good behaviour.(undefined

    An optimization principle for deriving nonequilibrium statistical models of Hamiltonian dynamics

    Full text link
    A general method for deriving closed reduced models of Hamiltonian dynamical systems is developed using techniques from optimization and statistical estimation. As in standard projection operator methods, a set of resolved variables is selected to capture the slow, macroscopic behavior of the system, and the family of quasi-equilibrium probability densities on phase space corresponding to these resolved variables is employed as a statistical model. The macroscopic dynamics of the mean resolved variables is determined by optimizing over paths of these probability densities. Specifically, a cost function is introduced that quantifies the lack-of-fit of such paths to the underlying microscopic dynamics; it is an ensemble-averaged, squared-norm of the residual that results from submitting a path of trial densities to the Liouville equation. The evolution of the macrostate is estimated by minimizing the time integral of the cost function. The value function for this optimization satisfies the associated Hamilton-Jacobi equation, and it determines the optimal relation between the statistical parameters and the irreversible fluxes of the resolved variables, thereby closing the reduced dynamics. The resulting equations for the macroscopic variables have the generic form of governing equations for nonequilibrium thermodynamics, and they furnish a rational extension of the classical equations of linear irreversible thermodynamics beyond the near-equilibrium regime. In particular, the value function is a thermodynamic potential that extends the classical dissipation function and supplies the nonlinear relation between thermodynamics forces and fluxes

    Branch-and-lift algorithm for deterministic global optimization in nonlinear optimal control

    Get PDF
    This paper presents a branch-and-lift algorithm for solving optimal control problems with smooth nonlinear dynamics and potentially nonconvex objective and constraint functionals to guaranteed global optimality. This algorithm features a direct sequential method and builds upon a generic, spatial branch-and-bound algorithm. A new operation, called lifting, is introduced, which refines the control parameterization via a Gram-Schmidt orthogonalization process, while simultaneously eliminating control subregions that are either infeasible or that provably cannot contain any global optima. Conditions are given under which the image of the control parameterization error in the state space contracts exponentially as the parameterization order is increased, thereby making the lifting operation efficient. A computational technique based on ellipsoidal calculus is also developed that satisfies these conditions. The practical applicability of branch-and-lift is illustrated in a numerical example. © 2013 Springer Science+Business Media New York
    • …
    corecore